Being Treated to Shenzhen


Shenzhen has been a pretty wacky experience. As soon as we got out of the subway station, we were literally greeted by a dance troupe. At first it seemed like maybe they were just street performers or just practicing for some cheerleading competition, who knows, big city, right? Except it was a pretty empty part of town and we were the only audience. And after they finished dancing they took a picture with us and walked away. It was super bizarre and disorienting and at the same time effective at welcoming us to the everything-will-happen attitude of Shenzhen.

The luxury tour bus provided by Tsinghua university was a big step up from taking the subway everywhere in Hong Kong, although it was always a little unnerving having little information on what the plan was, where we were going, how long we were going to be on the bus, that was always a mystery.

Basically, a cheerful woman meets us at the subway station and says she has a bus for us outside, and we gladly duck into the air conditioning. She welcomes us to China and introduces us to her co-workers (tho at this point we don’t know anything about her company) and one of her coworkers sings a song a capella over the bus’s PA. OK. We spend an hour driving on the highway through the city and the scale of this place become apparent. Unlike every other city I’ve been in where you drive out of the city center and the building get shorter, it seems that pretty much any residence here is required to be 40 stories high. Just endless high rises, with new ones being constructed right beside them. The only way you know you’re ‘downtown’ is when the high rises are covered in animated LED displays.

So we make it to Harbor School after weaving our way through a construction site with big signs for ‘special economic zone’ and I’ve written a separate blog about it cause it was awesome:

https://medium.com/p/e3bae07d8be7


And afterwards we had dinner at a great hot pot place, all paid for by our hosts (again, still unclear at this point on why they were treating us so well and who they were. Like I’m sure it was mentioned but I don’t know the name of any of the companies so it didn’t stick.) The next day it became more clear who are hosts were as we toured their factories that are owned by a company that has a partnership with the university. I’ll blog more about the factories separately, but after a few factory tours we ended up at this place:





It’s the showroom for this company 3Nod, and it took a while to figure out what the company did. The 3D room sized screen intro video communicated that they were all about creating a better future (implication: for wealthy people who live in spaceships). But the showroom was full of bluetooth speakers and headphones. Their vision of a smart home was just projector walls (a la Fahrenheit 451, surrounded by TVs…) I liked the style of the furniture, though one of my compatriots pointed out that they’d be pretty useless in practice, unless you can do all of your work via touchscreen.

Also the lights kinda clicked on and off without warning, the screens seemed to react to your gestures but didn’t do a great job (cause it’s Kinect based and it’s unreliable and everyone moved on from arm-wavey-HCI decades ago) so it seemed like their vision of the future was full of glitches and really needless technology stacks. There’s four projectors for that one wall. That’s like 2kW to have a bamboo forest by your couch. It would literally take less energy to just grow bamboo in your living room.

I really liked the couch tho.

Anyway we briefly met with Richard up in his office full of cigars and brandy. Very hollywood personality and attire. He kind of just pitched his company and his personal story to us without any context of why he’d invited a bunch of hackers/makers for a tour. He wanted to meet with Mitch and suggested the rest of us continue a tour of the building and hang out in his office on the top floor where he entertains. So there we were, a dozen idealists walking around gawking at this guy that makes his millions selling headphones with Wil.i.am. Alex took on entertaining us with piano and Jona performed a Chinese tea ceremony.

I noted that even surrounded by ostentatious wealth, sitting on plush couches, people still turn to their smartphones when they’re bored. Nothing all that exciting about it.

Ah, but no one is checking their phones in this last photo — we caught a ride to ShenzhenDIY. Well, the bus got us to the neighborhood but didn’t want to go onto the skinnier streets, so it was a nice walk. First past bustling markets with flashing LED and neon signage, electric bikes and mopeds weaving through people crossing the street, then through a dark alley with unfinished pavement such that a flashlight was necessary not to trip. Up a few flights of stairs in an old concrete building that I later learned housed a clothing factory and a Japanese sword factory (wait what?) we made it to the first real hackerspace of China, a tight community of people excited to meet visitors and share projects and passions. A DIY car chassis sat behind a comfy couch. Guitars and mixing boards sat against the wall. People passed around the microchips they were excited to write programs for. We went in a circle introducing ourselves and an expat member of the space announced in surprise that he is also from San Antonio, and he has never been in a room with so many Texans in China (two people in our tour group in the same room, pretty easy record to beat!)


A couple of friends and I went back the next day thanks to Yuheng opening the space for us to take advantage of the wifi and air conditioning. Here’s his github. He told us he’s writing a programming language with formal syntax to prove logical theorems (it won’t but the first, but it’s still an awesome project to write your own language). He was also interested in the design of spoken languages and introduce me to Toki Pona, an invented language of 120 words. He told us this was the first time he had a conversation with people speaking English which really surprised us and we asked how he learned, he said just talking along with American TV and movies. He also played a pretty mean Nirvana cover with one of the hackerspace’s guitars. Very inspiring dude.

Oh and this is the hackerspace that opened a second space at Harbor School, so they’re reaching out to the wider community and just being awesome.

Maker Education in Shenzhen


Our tour bus made its way through a construction site, backing up and doing 3 point turns (pretty good bus driver) running into dead ends trying to get across to this brand new school, “Harbor School”, finished a month ago. I didn’t realize it at first but I guess our visit was a sort of inauguration for the school’s makerspace. We met the headmaster, who was really passionate about the idea of project based learning, enough to successfully argue for the funds for this really beautiful space, stocked with Raspberry Pi for all the computers, LEGO-look-alike robot kits, soldering irons and LittleBits.





The school as a whole was really impressive, like I was jealous I didn’t get to go there. They had their own dinosaur skeleton and in the common spaces by the stairwells there were TVs playing “Planet Earth” and also the biggest laser cutter I’ve seen in my life.




There were a couple of American guys that worked there that we chatted with. If I remember right, one of them was there because he had done a lot of maker education and was hired by the school, and the other guy had been hired by the government to determine a way to get maker education to fit in with the curriculum.

This is a really interesting problem in China as well as the USA: we’ve got these really rigorous point by point learning goals that at a certain age you’re supposed to have a particular skill. When you require that people meet goals, you introduce the problem of evaluating whether or not the goals are met, resulting in the tremendous problems created by standardized tests, teaching to the test, etc. But now we’ve got thousands of teachers (American and apparently Chinese, too) who see the engagement and creativity that comes out of project-based learning / maker education. If you want to see a wider adaptation of this style of learning, however, you still have to be able to evaluate it in a way that proves the standards are being met (until such a time that standards can be done away with ;).

So that’s what this guy’s job was (if you’re reading this, email me!): coming up with a way to evaluate students who have learned in a classroom that wasn’t teaching to the test: but building stuff, being creative, following their own passions. How do you prove to a bureaucracy that they’re learning better than someone who studied what would be on the test? Cool job, I hope to keep up with his progress.

I’ve got high hopes for the kids growing up here. They’re going to be building all kinds of cool stuff. Maybe futuristic trains, telescopes, rocket ships and submarines like the poster on their wall 🙂


Botanic Gardens & Cat Café



Spent all day being a tourist. Took the ferry to the city, walked up the staircase — since the escalators go down during morning rush hour — to an American Diner called the Flying Pan (it totally didn’t occur to me that it’s a stupid racial pun until it was pointed out to me later, I just thought frying pans flying across the diner was a good image.)

Wandered around the botanic gardens, established in 1864! It’s incredible to think how much growth happened around these gardens.




Took the Peak Tramway up the mountain.




Walked down the mountain. It was a slow realization that the entire mountain was encased in concrete to prevent erosion. Most of it is covered in lichen and ferns, so I doubted myself until I saw fresh concrete slathered on (third picture). Lots of little streams built in as well.

Later in the day, Mitch and I stopped by a Cat Cafe 🙂







BBQ at Dim Sum Labs




Our last night in Hong Kong was spent with great food and tons of people. Conversation varied from the legality of weather balloons to the relationship between the color of LEDs and the color of stars (got my answer: of course it has to do with the electron band gap, even though LEDs produce light in a completely different way than the black box radiation of stars.)

People worked together to create a web server to control the color of the room’s lighting and brainstormed how to track the position of a flexible mesh of LEDs with OpenCV. We ate mango mochi (made in Kowloon!) and politely argued about the glycemic index of sugar vs flour and tried to recall why corn was ever subsidized in the first place. We found things around the space that connected us back home (Super sweet corn invented at UIUC, aerosol manufactured in Somerset xD).


The Dim Sum Labs Fridge. Taping the wifi-controlled MOSFETs to the ceiling.

The BBQ, if there was any doubt, was cooked on the shell of a PowerMac G5. We consulted each other about whether anodized aluminum was okay to burn under our food (we’re pretty sure it is, unless Apple dyed it a slightly shinier gray or something).

We learned about each other’s projects: an activist group collating tweets of UK police kettling into a compass telling protesters how to avoid the police lines. A helium balloon lost at sea. A CNC machine that performs micro-pipetting. Running a web server on the ESP2866 (a surprisingly powerful programmable wifi microchip for under $2).

Lots of hacking, lots of fun.

Day Two in Hong Kong

Today was a lot of walking. We met up with a local event organizer for lunch in the hilly Mid Levels of Hong Kong — but the restaurant was a tight fit for 18 people (and more trickling in…) so a few of us decided to walk back to central station. Half way there we intercepted a couple others from our group and joined up with them. It was a long walk for lunch in a subway station but it was nice to see more of the center of the city, with all of its elevated pedestrian walkways.




On the way back we took the escalators through the city, which seems like a really neat way to commute. Elevated moving sidewalks, pretty futuristic you know? The video might be boring but you can see what it’s like, anyway.

We arrived at a very cool destination called PMQ: a mixed use historic building that’s a lot of fun to explore the balconies and shops to the mixture of pianists practicing or improvising on the public pianos.

There were some nice exhibits about its history: it was originally a government school (British Colonial government, that is) in the 19th century sitting right between a neighborhood full of western foreigners and a neighborhood full of Chinese. The road that runs through both neighborhoods is called “Hollywood Road” (so named before Hollywood, California existed) and this school brought people from both neighborhoods together to study. Chinese students enrolled in English and westerners enrolled in Chinese classics (OK now I’m just reading the wiki article 🙂




A video playing in an exhibit also covered the building’s brief stint as a family dormitory for policemen. A man being interviewed recalled that each of the balconies was a shared dining area for two families, and from one balcony and you could look around to see who was having dinner and what they were cooking, and that it was a festive atmosphere every night with families all eating together. I could picture it standing there, and it seems like a really good design for a family residence. However, it was abandoned in 2000 and since renovated into this big mix of start ups, art studios, and craft shops (I bet a few of these shops have Etsy stores, I’ll put it that way).


Click to zoom and check out the smiley face balloon just chilling out.

Eventually we met up with some guys at Brinc, an “internet of things accelerator” with an office on the top floor of the building. I learned what an accelerator does! I had always lumped them into the same category as shared work spaces and incubators, just as something mysterious where people spend a lot of other people’s money. But it made sense that there’s a lot of people with an idea that they want to bring to market, but without experience working with manufacturers they risk bankrupting themselves without ever getting a finished product out of a factory.

So these guys make their experience getting new technology made at existing factories available to newbies, as well as marketing and business consulting like “Does your product have any desirability to the consumer?”, “How does your product stack up against its competition”, you know, value proposition stuff. [Insert guy’s name when I find his business card again] told us a lot of engineers think they have a good product just because they made something and it works. They hadn’t really gone through the rest of the process of whether it’s marketable, or even manufacturable. So the accelerators work with these startups to make sure they have a good product before spending hundreds of thousands of dollars approaching factories.

Imagining a group of guys building something and thinking they could just kickstart it and then order 1,000 of their widgets made me wonder, do any of these teams even have a friend that went to business school? Did anyone raise these questions before they moved to San Francisco looking for investors? So I asked [guy from Brinc] if the teams that come to him are mixes of business people and tech people, and he confirmed that it’s not too often they find a team that already has a balance of expertise, so that’s why they often serve to connect these startups with whatever talent they’re missing.

This made me realize that CUCFabLab working with the business school at U of I is a really unique, very positive partnership if it can encourage tech folks to mingle with the business minded, just so that if either of them has a good idea, they have a wider perspective of what the process of bringing hardware to market entails.

I thought it was very interesting to learn that this Brinc accelerator would bring start up teams out to live in Hong Kong, with the idea that if you’re going to be paying thousands of dollars for consultants and so on, you better be paying people that work directly with the factories that will make your product. We heard stories of start ups that burn through millions of dollars of funds by hiring teams and lawyers and talent to start a business without even making it across the pacific to start building their thing.

Afterwards, most of the group went on to the MakerBay hackerspace but I was feeling drained of energy, tired of being wet and a little sick, so I made my way back to Kowloon in search of a good Ramen shop. Found “Butao” and got a very spicy pork belly ramen and had myself a good sinus-clearing cry.


Parametrically Designed

CNC Plasmascreen Coffeetable

Being a university affiliated FabLab has some perks: we get to pull useful items from University Surplus (one department upgrades their computer lab, other departments call dibs on the old hardware, sometimes really new stuff, sometimes really old stuff).

Nearly all of the computer equipment at CUCFabLab was pulled second-hand this way, then topped off with RAM and upgraded to SSDs. A funny assortment of other supplies end up getting collected: decades old oscilliscopes, a 1980s bandsaw, and this big old 60″ plasma screen display.

It weighs about 100 pounds and is fairly low resolution (not quite 720p if I remember right) and it took up an awful lot of table space, so it quickly got basemented. That was until my Fab Academy assignment was to ‘make something big’ and I remembered that I always wanted a coffee table that was a giant computer screen.




The neat thing about plasma screens is that a lot of the electronics are bonded to the glass (tho I can’t recall where I heard that…) and as a result, they often have a pretty thick slab of glass to start with, so it’s sturdy enough that I don’t feel nervous about setting my laptop and maybe a cup of coffee on the screen (tho a spill of the latter might be fairly disastrous if you don’t contain it before it drips into the edges…).

Putting a big slab of acrylic or glass on top of a large display is often the most expensive part of this kind of object, so avoiding that part altogether meant I just needed a cheap MDF base for the TV to sit on. Like most TVs, there’s the front body of the screen that tries to be thinner while the power supply and mainboard sits in a sort of hump on the backside. So the design of a base that goes up to this edge but leaves room for the hump turns out looking like a pool table.



It was designed using the Rhino plugin Grasshopper, which proved to be a very intuitive interface for parametric design. It is a matter of dictating the size and position of 3 rectangles (the top of the table, the base of the table, and one that can be scaled and moved as a midpoint) and then creating “lofted curves” through each set of corners. This is an automatic function that creates the whole smooth shape pictured without any work on my part. I get to just change the position of the midpoint of the curve until I like the look of the resulting curve. Then I just subtracted a box with the inner dimensions I needed from the larger shape.

After that, I have a program to do the work of planning my assembly as well. The free 123D Make by Autodesk has a great workflow to open your 3D file, type in your material parameters (“I’m using 4′ by 8′ sheets of material 1/2 inch thick”)




I got the pieces cut at the architecture lab with lots of help. I learned that with this slotted construction technique it’s necessary to drill holes at every interior corner (so in the CAD file you select each of these corners and create ‘points’ on a separate layer to export as a drill file). This was about $40 worth of MDF and took less than an hour to cut out on Architecture’s giant fancy CNC machine.

Assembling it took a lot longer. Lots of rubber malleting.



I started playing with processing sketches (like the rainbow above), but it takes up a lot of space and there’s not a good spot for it at the lab, but the TV is unvierstity property so it can’t be taken off campus, so it is hidden in a corner — the interactive processing sketches will wait for now.

Printing New Frames for Old Lenses

I think it is not an uncommon experience for people who are bit by the 3D Printing bug to look at each object in their daily life and wonder “Could I print that?” It’s also fun to look at objects and think of how you would manipulate a cube, a sphere, or a cylinder (common ‘primitive’ shapes in 3D design).

So I had been practicing Blender and noted that the lenses of my eyeglasses just pop in and out of my super-cheap plastic frames — no screws required. And of course I thought “I could print that.” It wasn’t until a newcomer to Makerspace Urbana wandered in with the same idea that I made progress.




The second design iteration

Basically, I knew how to trace the 2D oval shape of the lens (take a picture, draw a bezier curve in Inkscape on top of the photograph, import that bezier curve into Blender, convert it to a mesh, and start building the frame outward from that. But the lenses aren’t flat, and I didn’t have a clue how to measure and mimic that curvature in Blender. I wish I could remember the guy’s name (this was a couple years ago) but an optician walks into Makerspace with he same idea, except he knows about these lookup tables where you can find the curvature of particular prescriptions. It’s a pretty straight forward set of numbers: a sphere of a certain radius a certain distance from the lens. That information made it trivial to take my bezier curve in Blender deform into the actual curvature of my lens using the “ShrinkWrap” modifier. Position the curve at the right distance from the sphere, and ‘shrinkwrap’ the curve to the surface of the sphere.



Modelling the outline and curvature of my prescription lens.

The lens has a bezel top and bottom which I could measure the height of, but the angle of the bezel was just eyeballed. I simply extruded this ring outward to create the first test fit (printed at MakerLab). Plastic is now one of my favorite materials because of how forgiving it can be: it stretches and snaps and even tho I did very rough measurements, the lens snapped right into place.




From there, I printed some pince-nez style frames that I wore around for a while before sitting back down to model the earpieces in Blender. The first iteration was printed in one solid piece, face down, earpieces being build straight into the air with no supports. This worked great for a few inches, but I learned that the plastic being extruded applies a significant amount of pressure on the plastic beneath it, so that as the towering earpieces grew, they began being pushed side to side as the nozzle worked on the next layer such that subsequent layers were not stacking up straight. The night that I was determined to finish a pair (I had by now broken my manufactured frames from popping the lenses in and out so much), I wanted to be able to see on the bike ride home, so I had to finish these. Our of desperation, I braced myself against the frame of the printer and held onto the earpieces to stabilise them by hand for the last 20 minutes of the print. They still turned out looking like a dog had gnawed on the ends of the frame (the misaligned top of the print) but that sits behind my ears and I told myself it gave it a more homemade touch.

To get the lenses to fit into these frames took a few more tries (I used the same file, but the original print was done in PLA on a Makerbot, and these were now in ABS, and between the expansion and contraction of plastic and the slightly differing calibration of printers, well, point is these things aren’t always consistent.)




I got a lot of mileage out of this design, printing a few alternative colors, including glow in the dark. They looked a bit toyish, which is a style of its own. The real trick though is that they were printed with the earpieces straight up and down at a width that’s just a bit skinnier than my head: so when stretched over my face, they actually pinch just enough that they never fell off (but were still suitably comfortable.)

The next iteration (pictured at the top) was designed with hinges, but without a lot of thought into how to prevent the hinge from swinging both ways. After printing the pieces separately, I drilled a 1/32″ hole through the pivot point, stuck 20 gauge copper wire into the hole, snipped off the remainder, and filled the hole top and bottom with superglue, pivoting the hinge as it dried so that it only adhered to the top and bottom.

I liked the look of these (that PETT plastic carries light like fiber optic, so they kind of sparkle), but they did fall off my face time to time owing to the backwards bending hinges, so when I accidentally stepped on them in my morning stupor, I just went out and got contacts.

Hacker Trip To China

Hong Kong

That’s Innovation Tower! Looks like a cruise ship from the year 2070, right? Possibly interplanetary space-worthy? It houses the school of design at Hong Kong Polytechnic University and was the first stop of Noisebridge’s Hacker Trip To China 2015.

We toured three separate spaces just today: the workshops at PolyTech, DimSubLabs, and LAB by Dimension+.


Sewing Studio & Ceramic Studio at PolyTech

We met with William of Dim Sum Labs outside our hotel who took us on a tour of the PolyTechnic University, pointing our the tight grouping of the Business School, Design School, and Textiles School. We interrupted a couple of classes, where students were happy to explain what they were working on. I met one guy doing a papercraft mech (you know, those giant flying fighting robots) which he designed in CAD and broke out all kinds of engineering drawings of how to fold this complex origami. A girl was working on a chair made of bamboo and cord, taking advantage of its tension. Always something being cut in two (I think I saw some chiseling going on) and folded into shape.

So it’s a very well equipped university lab, open only to design students. Reminded me that I wish I had access to ceramics wheels again. The thing that attracted my attention the most was the excellent signage! Maybe a boring thing but it’s a topic of constant discussion at CUCFabLab — how to make the signs better, how to make sigs that express rules and expectations and capabilities. So when I saw the wall-sized page-turning displays of materials, I said to myself “Duh!” and when I saw a big poster listing all the tools available at the lab with a key connecting it to its picture, I said to myself, “duh!” There was even a big poster by the laser cutters describing what line weight and file format to use.







So I got organizationally inspired. After concluding our tour, we had a big lunch (I’ve been impressed so far with Hong Kong restaurant’s capacity to cater to a group of 18 people without warning) and headed to Dim Sum Labs, but not before topping off our ‘Octupus Cards’ — which is the tap to pay card for all the public transit systems as well as convenience stores. I forget who it was, but somebody had an app on their phone that could read any NFC chip and dump all of its information on the screen, so with one tap we found out the model # of the microchip and the software version running on these featureless plastic cards. Neat stuff — we joked about editing the information (chiefly, the current balance), but there’s some pretty tight encryption running on those little plastic cards, too.

“Do you think I can edit the balance of this without putting cash on it?”

“Put money on it without paying money? Yeah I’d like to know, too.”



Workshop at Polytech, Dim Sum Labs, and Architecture Model Lab at Polytech

Dim Sum Labs is a one room affair (I think I heard 400 sq ft), which they pay about $1,500 USD/month for. They’ve got some great self-screen-printed tshirts (William is wearing one in the pics) and a great RGB LED lighting system — kind of looks like christmas lights in the picture. One of the members was working on an upgrade: to make the color of the whole room programmable (switching a few amps on and off is a little tougher than blinking one LED).

I was reminded of my dream-classroom for teaching intro to programming: individually addressable LEDs covering the ceiling such that each student in a classroom could start by controlling just the one LED, getting to know how to blink it and effect its color. Then each student could work their way up to controlling larger arrangements: perhaps a row of 5 LEDs, then a grid of 5 x 5 LEDs, until the students’ combined work is creating undulating colors across the whole ceiling.

The benefit of this is twofold:

  1. basic programming is a lot more interesting if you get to control something not on your computer screen (I learned by manipulating strings in a command line, but I see people blinking LEDs are a lot more enthusiastic about a few lines of code.)
  2. As a teacher / mentor, you don’t have to squint and bend down to someone’s screen to see how they’re doing. You can see the progress of the whole class at once. Better yet, the students can see the results of each others work, too, leading to un-plannable “how did you do that?!” learning moments.

So I was going on about how I wanted to build a room like that, and the guy I was talking to (I’ll learn everyone’s names soon enough…) said “Oh, we got a ceiling you could do that with at our hackerspace in Chico (California)”

!!!!

Then a guy across the table says “What? You live in Chico? I grew up in Chico!” The bigger the city, the smaller the world.


The rooftop at Dim Sum Labs.

After hanging out a Dim Sum Labs for an hour or two, and we connected to an acquaintance that was told “We’d like to visit Dim Subs Labs and other places of Geek Interest” by Mitch so we ended up at a very cool espresso bar / third wave coffee shop (that’s the kind where they roast the beans behind the counter and let you pick out which farm you want to try the flavor of) that had local art for sale, the majority of which was laser cut upstairs.




Laser Cut Stuff + Quick-and-Dirty Ceramic 3D Printer at “Labs by Dimension+”

Again, I was inspired and surprised by dioramas that communicated the capabilities of the space. Just a general feeling of “why didn’t I think of that?” all day. So they’ve got these products they sell, both as little assemble-it-yourself kits like the bud vase and as assembled products which you can inspect all of the parts. I’d love to build some of these at my home FabLab as well, just to get people’s minds going on what you can do with these tools.

Afterwards we wandered an electronics market, tho it was late enough that most booths were closed. A few people were figuring out SIM cards and international power adapters. Mitch was testing the charge rate of different USB cables which is a shocking discovery that merits further investigation: some USB cables charged his phone at a piddling 80mAH and others charged at 10 times that rate. Like, what? It’s four wires, there’s nothing in there, how can one cable charge so much faster than another? Hmm…

Anyway, I need to buy an umbrella. It’s going to be a rainy week.