Building Brackets around the C-LEG prosthetic

This is Part Three. See: Part One, Part Two

Started out with some photogrammetry to capture the geometry of the C-LEG, which will hopefully allow me to 3D print a bracket that fits the contours of the the C-LEG precisely.

This first scan was enough to play around with, but ultimately the glossiness and the bright sunlight caused enough gaps and distortions that I had to do a photoshoot later that night using our CNC machine as a light box. The even lighting from the LED rope was just the trick.

The next step was selecting a portion of the C-LEG’s surface to extrude into a form fitting shell. Blender was used to create a mirror image of the scan, and MeshLab was used to align the two sides and fill in the holes so I had a reconstruction of the entire CLEG (Agisoft was only able to reconstruct one side of it — I could of went back and tried another photoshoot, but decided it would be faster to just duplicate the half that worked). In the video you can see the mesh of the whole C-LEG next to the original scan.

Blender and MeshLab were used back and forth here: Blender allowed me to select a portion of the mesh freehand and export as a separate STL. MeshLab allowed me to offset this surface using ‘Uniform Mesh Resampling’ and then construct a volume around the surface using Uniform Mesh Resampling with ‘Absolute Distance’ checked off. This created an excessive and messy edge, however, so I brought it into Blender to perform a boolean intersection, extruding the surface that I selected earlier outward to overlap with the portion of the new mesh that I wanted to keep. With that cut performed, I used MeshLab one last time to perform a ‘Surface Reconstruction: Poisson” to smooth the corners. To cut a slit in the back of the model I used Tinkercad, because it’s quicker to align and subtract a cube, knowing what I know.

And it actually clipped on the way I had hoped, wrapping around the edges — but there was a considerable gap. The inner diameter of the print was 60mm, while the C-LEG is 55mm wide, so I uploaded the STL to tinkercad at 91% of the original size to continue to prototype #2:

I used some cylinder, cube, and hexagon shapes to throw together clamps that I can add nuts and bolts to for this print, to see if I can really clamp down on the C-LEG enough to hang some weight off of it.

Ended up printing copies at 93% and 96% of original size. It is not a perfect fit, but once tightened down with bolts, holds on pretty well. This one cracked due to the nut turning against the plastic — the white ABS must have shrunk more than the grey ABS, which had holes big enough for the nuts to sink into without forcing it.

Leave a Reply

Your email address will not be published. Required fields are marked *